

Amazon KDD Cup 2024 Team NVIDIA solution - 28th August 2024

Ahmet Erdem C*

Gilberto Titericz 🔊

1st Place - Team NVIDIA

Benedikt Schifferrer 📂

Ivan Sorokin 🛨

Chris Deotte 🗾

Simon Jegou 🚺

	Track 1	Track 2	Track 3	Track 4	Track 5
Team NVIDIA	83.3	79.1	74.6	76.1	78.8
2nd place	82.5 (-0.8)	78.4 (-0.7)	73.3 (-1.3)	73.5 (-2.6)	78.2 (-0.6)
3rd place	82.4 (-0.9)	78.1 (-1.0)	72.8 (-1.8)	71.5 (-4.6)	77.3 (-1.5)

Solution Summary Fine-tuning Qwen2-72B

Agenda

- KDD Cup'24
- Dataset
- Solution

Question and Answers

Amazon KDD Cup'24

amazon KDD Cup 2024

Multi-Task Online Shopping Challenge for LLMs

(\$) 10,500 231,000

Summary:

- domain
- tracks
- hosted infrastructure with specific compute and time constraints.
- No Private Test Dataset

Challenges

- participants
- requires to generalize to other tasks
- on 4x NVIDIA T4 GPUs with 16GB memory

Evaluating Large Language Models as helpful assistance in ecommerce

 Test Dataset (ShopBench) contained 20,000 questions covering 57 diverse tasks, representing 5 task types (e.g. Multiple Choice) and organized in 4

Code Competition: No access to test dataset and solutions are executed on

No Training Dataset: Only 96 example questions were shared with the

Hidden tasks: The 96 questions represent only 18 of 57 tasks. The model

• Time and compute constraints: Solutions have to run in a specific timelimit

BUY		NEW	Ť
		NEW-	

Input	The product 'Hanes Men's Beefy-T T Heavyweight Cotton Tee, 1 Or 2 Pac Tall' appears on an e-commerce wel What type of fabric is used in it? 0. spandex, polyester 1. cotton 2. microfiber 3. It cannot be inferred. Answer:
Answer	1

Track	Time (min
1	70
2	20
3	30
4	20
5	140

Dataset

- Amazon-M2

- A multi-lingual Amazon session dataset with rich meta-data used for KDD Cup 2023.

Amazon Reviews 2023

- A large scale Amazon Review Dataset with rich features and over 500M reviews across 33 categories.

NingLab/ECInstruct

- Instruction dataset covers 116,528 samples from 10 real and widely performed e-commerce tasks of 4 categories.

- ESCI-data

- Shopping Queries dataset provides a list of up to 40 potentially relevant results, together with ESCI relevance judgements (Exact, Substitute, Complement, Irrelevant) indicating the relevance of the product to the query.

- MMLU

- Massive multitask test consisting of 16k multiple-choice questions - and auxiliary 100k multiple-choice training questions from ARC, MC_TEST, OBQA, RACE, etc.

Alpaca-Cleaned

- Cleaned version of the original Alpaca Dataset released by Stanford.

Training Datasets Input Sources

1) Prompt LLM to construct the task from the multiple seed data

(a) combine product attributes, target entity, instruction (b) combine user query, product list, instruction (c) combine question, documents, instruction

2) Enrich the seed data with missing details

(a) extract entities from product description (b) identify the product type or category

3) Generate instructions with different wordings

(a) replace existing instruction with new wordings

Training Datasets Synthetic data generation

No LLM used 40.2%

Training Datasets - 39 Diverse Datasets with total of ~500,000 Samples

- Around 30% of the samples were based on own ideas

• We build 39 different datasets based on 7 public available datasets as an input, resulting in total 500,000 samples Majority of samples were multiple choice questions (61%) followed by generation (14%)

Training Datasets - A Few Own Examples

Example 1	The product 'American Flag Patch, US Mili on an online shopping website. Which of t 0. <random review=""> 1. looks great holding it's color in the hot su 2. <random review=""> 3. <random review=""> Output: 1</random></random></random>
Example 2	The product 'Shine Whitening - Zero Perox rank the reviews according their helpful Review List: <list of="" review=""></list>
	You should output a permutation of 1 to 5. respond with the ranking results. Do not sa Output: Output: 2, 1, 4, 5, 3
<section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	A user is searching for the product 'ZEN Bu queries according their relevance with t Query List: 1. straight bong 2. brown pipe cleaners 3. pipe softy bits 4. chillum pipe
	You should output a permutation of 1 to 4. respond with the ranking results. Do not sa Output: Output: 3,2,1,4

itary Patches Independence Day Tactical Patch Waterproof Non-Fading Flag Patches for Backpacks Caps Clothes.' is available the following reviews was written for this product:

un. quality material no rips or frays from windy conditions here. very satisfied.

kide Teeth Whitening System - No Sensitivity' has multiple product reviews. Given the following numbered list of 5 reviews, please Iness to a user. The most helpful review should appear first and the least helpful review should be last.

There should be a comma separating two numbers. Each review and its number should appear only once in the output. Only ay any word or explanations.

the product.

There should be a comma separating two numbers. Each query and its number should appear only once in the output. Only ay any word or explanations.

undles Zen Pipe Cleaners Hard Bristle, 132 Count (Pack of 3)'. Given the following numbered list of 4 queries, please rank the

Methods

- LLMs without fine-tuning provide great results out of the box • During Phase 1, we focused on prompt engineering and model selection
- Qwen2-72B without fine-tuning would score 9th overall and 4th place on Track 5 at the end of the competition • At the end of Phase 1, initial experiments demonstrated the potential benefits of fine-tuning

Model	Track 1	Track 2	Track 3	Track 4	Track 5
Bagel-34B-v0.5	0.701	0.661	0.634	0.587	0.683
Smaug-72B	0.718		0.656	<u>0.648</u>	0.698
LLaMa3-70B	<u>0.781</u>	<u>0.653</u>	<u>0.666</u>	0.624	<u>0.718</u>
Qwen2-72B	0.798	0.641	0.719	0.692	0.749

LLM comparison without fine-tuning

- We fine-tuned Qwen2-72B-Instruct with QLoRa using the axolotl library
- Fine-tuning ran on 8x A100 GPUs each with 80 GB GPU memory for 24 hours
- Loss is calculated on the answer tokens using SFT. Hypothesis: more complex methods such as RLHF is not required as answers contain very few tokens
- System prompt contains the task type: "You are a helpful online shopping assistant. Your task is {task type}.". During inference, simple heuristics are used to determine the task type.

Hyperparameter	Value
Optimizer	AdamW
LR Scheduler	cosine
Learning Rate (LR)	0.0002
Weight Decay	0.01
Warm Up Steps	10
Micro Batch Size	1
Gradient Accumulation	4
QLoRa R	64
QLoRa Alpha	32
QLoRa Dropout	0.05
QLoRa Linear	TRUE
Quantization	4-bit

Fine-Tuning Qwen2

Model	Track 1	Track 2	Track 3	Track 4	Tra
Qwen2 72B Base Model	0.798	0.641	0.719	0.692	0
Qwen2 72B Fine-Tuned	0.816 (+1.8)	0.787 (+14.6)	0.729 (+1.0)	0.758 (+6.6)	0.77

Accuracy gain on Track 5 using Wise-ft

Wise-ft

• We used wise-ft to deal with the **distribution shift** between our training set and the ShopBench dataset. Wise-ft linearly interpolates between the base model and the fine-tuned model • Wise-ft brought gains +1.5 of +1.3 and +0.8 on Tracks 1, 3 and 5.

- Goal is to explore different dataset blends

	Model	Track 1	Track 2	Track 3	Track 4	Track 5
Iteration 1	Dataset	v8	v7	v8	v7	v8
	Weight	0.56	1	0.56	1	0.56
	LB score	0.831	0.787	0.742	0.758	0.787
Iteration 2	Dataset	v9b	v7b	v9b	v7b	v9b
	Weight	0.75	0.5	0.25	0.5	0.25
	LB score	0.833 (+0.2)	0.791 (+0.4)	0.746 (+0.4)	0.761 (+0.3)	0.788 (+0.1)

Iterative fine-tuning

• We fine-tuned our models a second time on slightly different datasets and obtain a boost of +0.2 to +0.4 This second round of fine-tuning is much faster: 3-8h compared to 24h

- For MC: 1 token among [0, 1, 2, 3, 4, 5]

- For generation: no constraints

Logits processor

 During phase 1, we used logits processors to constrain the LLM generation process For retrieval and ranking: numbers separated by commas • For NER: increase the logits of prompt tokens by a constant value

During phase 2, fine-tuning reduced the need for logits processors but we kept them

Quantization

- GPTQ-Int4 gave very similar results

vLLM

Quantization & vLLM

• 4xT4 = 64GB of memory \rightarrow too few for 144GB of weights in bfloat 16 • We merged the LoRA adapter into Qwen-72B weighted and quantized them to int4 using AWQ \rightarrow 37GB • We used the 96 QA pairs for calibration, it took ~1 hour on a single A100 GPU

• Before quantization, we padded MLP weights with 128 zeros to allow tensor-parallelism in vLLM on 4 GPUs

Questions & Answers

Fine-Tuning improved Base Models by 0.0035 to 0.15

Model

Smaug 72B Base

Smaug 72B Fine-

Qwen2 72B Base

Qwen2 72B Fine-

	Track 1	Track 2	Track 3	Track 4	Track 5
e Model	0.7178		0.6564	0.6484	0.6975
-Tuned	0.7800	0.7389			
e Model	0.7982	0.6407	0.7193	0.6918	0.7486
-Tuned	0.8334	0.7909	0.7461	0.7609	0.7883

• During the competition we fine-tuned Smaug 72B and Qwen2 72B for a fair comparison Some values are missing because we had not enough submission and/or they timed out

and we continued the experiments in another direction

For Qwen2 72B we can see significant gains per track by fine-tuning the model

Training Datasets - 39 Diverse Datasets with total of ~500,000 Samples Summary: Reusing Existing Datasets

Source Dataset	Task	Task Type	Size	Additional E
Amazon-M2	Task 2	multiple-choice	2350	Select produc
				Given a produ
Amazon Reviews 2023	Task 3	retrieval	7373	about the pro
Amazon Reviews 2023	Task 7	retrieval	3608	Given a produ
Amazon Reviews 2023	Task 10	multiple-choice	10000	Given a produ
ESCI-data	Task 12	ranking	16728	
Amazon Reviews 2023	Task 14	ranking	5815	Given a produ
Amazon Reviews 2023	Task 15	multiple-choice	10000	Given a produ
ESCI-data	Task 16	multiple-choice	10000	
Amazon-M2	Task 17	generation	10000	
Amazon-M2	Task 18	multiple-choice	10000	
NingLab/ECInstruct	Attribute Value Extraction	NER	19622	
NingLab/ECInstruct	Multiclass Product Classification	multiple-choice	10000	
NingLab/ECInstruct	Product Relation Prediction	multiple-choice	10000	
NingLab/ECInstruct	Query Product Rank	retrieval	10000	
NingLab/ECInstruct	Sequential Recommendation	multiple-choice	10000	
NingLab/ECInstruct	Answerability Prediction	multiple-choice	10000	
NingLab/ECInstruct	Product Matching	multiple-choice	4044	
NingLab/ECInstruct	Product Substitute Identification	multiple-choice	10000	
NingLab/ECInstruct	Sentiment Analysis	multiple-choice	10000	
Alpaca Cleaned	Next Token Prediction	generation	51760	
MMLU	Next Token Prediction	multiple-choice	115700	

• Build 21 datasets (347k samples) close to existing tasks from KDD Cup 2024, ECInstruct and general LLM • Adding Alpaca Cleaned and MMLU datasets are high quality LLM datasets to keep general reasoning and QA capabilities

xplanation

ct categories given product attributes

uct type and sentiment, select 3 most likely snippet a customer would write oduct

uct type and a review, select 3 aspects covered by the review

uct type, which of the following categories complement the product type best?

uct title a customer will buy, which other product titles will he like uct review, estimate the rating of the review

Training Datasets - 39 Diverse Datasets with total of ~500,000 Samples Summary: Implementing Own Ideas

Source Dataset	Task	Task Type	Size	Additional Explanation
Amazon-M2	New Idea	generation	10000	Explain product type given title, description, and pr
ESCI-data	New Idea	multiple-choice	10000	select the user query that matches the product des
ESCI-data	New Idea	multiple-choice	10000	select the user query that matches the product feat
ESCI-data	New Idea	multiple-choice	10000	select the user query that matches the product title
ESCI-data	New Idea	multiple-choice	10000	select the title for the product description
ESCI-data	New Idea	multiple-choice	10000	select the title for the product features
ESCI-data	New Idea	multiple-choice	10000	select the product title for the user query
ESCI-data	New Idea	retrieval	10000	pick 3 bullet points to match product
NingLab/ECInstruct	New Idea	ranking	5000	rank product reviews - positive to negative
ESCI-data	New Idea	multiple-choice	5435	pick product to match query
ESCI-data	New Idea	ranking	5000	task12 backwards. Given product, rank queries
KDD Cup 2023	New Idea	retrieval	10000	Given purchase pick previous clicks (similar to task
ESCI-data	New Idea	multiple-choice	10000	given title pick brand
ESCI-data	New Idea	multiple-choice	10000	given query product pair, what is relationship? E S
ESCI-data	New Idea	ranking	10000	given list of query product pairs, rank which are mo
ESCI-data	New Idea	retrieval	10000	given query, select products which are exact match
Amazon Reviews 2023	New Idea	ranking	10000	Given a product title an multiple reviews, rank the r

Build another 17 datasets (~150k samples) by implementing own ideas as new tasks

oduct type
scription
tures
< 14)
CI
ost related to least related
n not substitute, complement, or irrelevent
reviews based on the helpfulness

